
Séquence 2 Type bac

Bac S Pondichéry 2012 – Dosage spectrophotométrique par étalonnage

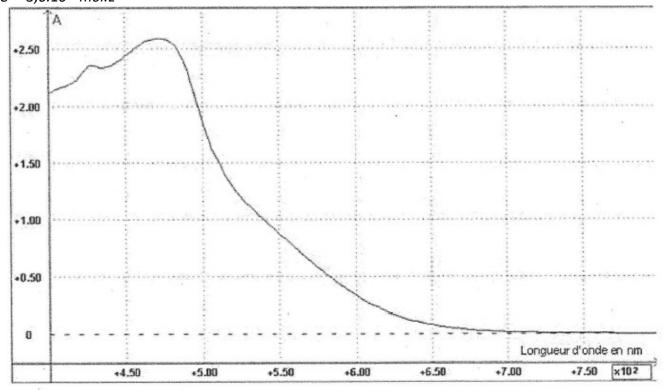
La lumière est un « outil » précieux en chimie analytique. En effet, toute espèce chimique est susceptible d'interagir avec des radiations lumineuses. Par exemple, une espèce colorée X absorbe certaines radiations visibles.

Le principe de la spectrophotométrie repose sur la mesure de l'absorbance A de l'espèce X en solution dans un solvant Y. Cette grandeur A est le résultat de la comparaison de deux intensités lumineuses : celle d'une radiation monochromatique ayant traversé une cuve transparente contenant le solvant Y, et celle de la même radiation émergeant de la même cuve contenant la solution de l'espèce X dans le solvant Y.

Schéma de principe d'un spectrophotomètre à prisme

I. Lumière et spectrophotométrie

- 1. Donner les valeurs limites des longueurs d'onde du spectre visible dans le vide et les couleurs correspondantes.
- 2. Situer, du point de vue de leur longueur d'onde, les rayonnements ultraviolets et infrarouges par rapport au spectre visible.
- 3. Le rôle du monochromateur dans un spectrophotomètre est de sélectionner une radiation monochromatique particulière. Donner la définition d'une lumière monochromatique.


II. <u>Dosage colorimétrique par étalonnage</u>

On se propose de déterminer la concentration en diiode I₂(aq) dans une teinture d'iode officinale. On commence par diluer 200 fois la teinture d'iode (trop concentrée pour une étude spectrophotométrique directe). La solution aqueuse obtenue à l'issue de cette dilution est appelée solution S.

Par ailleurs, on dispose d'un ensemble de solutions aqueuses de diiode notées Di $(D_1, D_2, etc.)$ de concentrations connues toutes différentes. Ces solutions ont des colorations proches de celle de la solution S.

Séquence 2 Type bac

Données : Spectre d'absorption d'une solution aqueuse de diiode de concentration molaire $C = 3,0.10^3 \text{ mol.L}^{-1}$

Masse molaire atomique de l'iode : $M(I) = 127 \text{ g.mol}^{-1}$

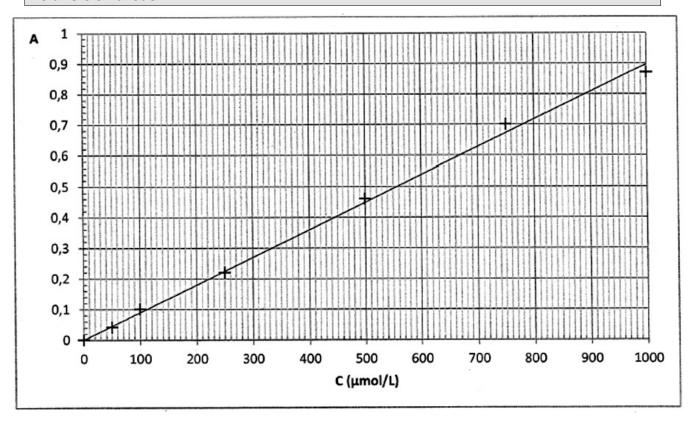
Écart relatif entre une valeur expérimentale G_{exp} et une valeur attendue G_{a} d'une grandeur quelconque $G:\left|\frac{G_{\text{exp}}-G_{\text{a}}}{G_{\text{a}}}\right|$

On peut trouver expérimentalement un encadrement de la concentration en diiode de la solution S, sans utiliser un spectrophotomètre.

- 4. Expliquer brièvement la méthode.
- 5. Pourquoi lors de la mise en œuvre de cette méthode, faut-il que les récipients utilisés (tubes à essais ou béchers) soient tous identiques ?

À l'aide d'un spectrophotomètre, on mesure l'absorbance A_i de chaque solution D_i de diiode, puis celle de la solution S.

6. Donner la valeur d'une longueur d'onde qui vous paraît bien appropriée pour ces mesures. Justifier brièvement.


On obtient les résultats suivants :

Concentration C de la solution en µmol.L ⁻¹	50	100	250	500	750	1000
Absorbance A de la solution	0,041	0,10	0,22	0,46	0,70	0,87

Absorbance de la solution S: A = 0,78.

Séquence 2 Type bac

Ci-dessous est fournie la courbe d'étalonnage de l'absorbance en fonction de la concentration molaire C en diiode.

La relation entre l'absorbance A et la concentration C est appelée loi de Beer-Lambert.

Elle s'écrit : $A = k \times C$ avec k une constante et C la concentration molaire de l'espèce colorée dans la solution.

- 7. La courbe d'étalonnage obtenue est-elle en accord avec cette loi ? Justifier.
- 8. Déterminer graphiquement la concentration molaire $C_{s\text{-exp}}$ en diiode de la solution S. En déduire la concentration molaire C_{exp} en diiode de la teinture d'iode officinale.

La teinture d'iode officinale est étiquetée à 5,0 % en masse de diiode. Sa masse volumique est $\rho = 9,0.10^2\,g.L^{-1}$.

- 9. À partir de ces données, vérifier que la concentration massique C_m en diiode attendue dans cette teinture est 45 g.L⁻¹.
- 10. En déduire la valeur de la concentration molaire attendue en diiode dans cette teinture. On la notera C_a.
- 11. Calculer l'écart relatif entre la valeur expérimentale C_{exp} à la valeur C_a. Conclure.